{"id":5760,"date":"2021-01-13T20:26:20","date_gmt":"2021-01-13T20:26:20","guid":{"rendered":"https:\/\/www.studygate.com\/blog-cn\/?p=5760"},"modified":"2022-03-18T19:48:37","modified_gmt":"2022-03-18T19:48:37","slug":"physics-formulas","status":"publish","type":"post","link":"https:\/\/www.studygate.com\/blog-cn\/physics-formulas\/","title":{"rendered":"\u5e38\u7528\u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1aPhysics Formula Sheet \u7269\u7406\u516c\u5f0f\u8868\u4e2d\u82f1\u5bf9\u7167\uff0c\u6700\u5168\u5408\u96c6\uff01"},"content":{"rendered":"
<\/p>\n
\u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u76f4\u7ebf\u8fd0\u52a8<\/strong> Equations of Motion<\/strong><\/p>\n where s = \u4f4d\u79fb (+\/\u2014ive) (\u5355\u4f4d: m)<\/p>\n where u, v = \u901f\u5ea6 (+\/\u2014ive) (\u5355\u4f4d: m s\u20141)<\/p>\n where a = \u52a0\u901f\u5ea6 (+\/\u2014ive) (\u5355\u4f4d: m s\u20141)<\/p>\n where s = displacement (+\/\u2014ive) (units: m)<\/p>\n where u, v = initial, final velocity (+\/\u2014ive) (units: m s\u20141)<\/p>\n where a = acceleration (+\/\u2014ive) (units: m s\u20141)<\/p>\n where t = time (\u2265 0)\u00a0 (units: s)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u6e29\u5ea6<\/strong> & <\/strong>\u7269\u6001<\/strong> Temperature & State<\/strong><\/p>\n \u52a0\u70ed\u548c\u51b7\u5374\u65f6\u7684\u80fd\u91cf\u8f6c\u79fb<\/p>\n \u7269\u6001\u53d8\u5316\u65f6\u7684\u80fd\u91cf\u8f6c\u79fb<\/p>\n where E = \u80fd\u91cf (\u5355\u4f4d: J)<\/p>\n where m = \u8d28\u91cf (\u5355\u4f4d: kg)<\/p>\n where c = \u6bd4\u70ed\u5bb9\u91cf (\u5355\u4f4d: J kg\u20141 K\u20141)<\/p>\n where l = \u6f5c\u70ed (\u5355\u4f4d:\u00a0 J kg\u20141)<\/p>\n where E = energy (units: J)<\/p>\n where m = mass (units: kg)<\/p>\n where c = specific heat capacity (units: J kg\u20141 K\u20141)<\/p>\n where \u0394T = change in temperature (units: K) where l = latent heat (units:\u00a0 J kg\u20141)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u7406\u60f3\u6c14\u4f53\u72b6\u6001<\/strong> Ideal Gas<\/strong><\/p>\n \u7406\u60f3\u6c14\u4f53\u72b6\u6001\u65b9\u7a0b<\/p>\n \u5206\u5b50\u8fd0\u52a8\u8bba\u65b9\u7a0b<\/p>\n \u6c14\u4f53\u5206\u5b50\u52a8\u80fd<\/p>\n where p = \u538b\u5f3a (\u5355\u4f4d: Pa)<\/p>\n where V = \u4f53\u79ef (\u5355\u4f4d: m3)<\/p>\n where R = 8.31 (\u5355\u4f4d: J mol\u20141 K\u20141)<\/p>\n where T = \u6e29\u5ea6 (\u5355\u4f4d: K)<\/p>\n where kB = 1.38 \u00d7 10-23\u00a0 (\u5355\u4f4d: J K\u20141)<\/p>\n where EK = \u52a8\u80fd (\u5355\u4f4d: J)<\/p>\n where NA = 6.02 x 1023 (\u5355\u4f4d: mol\u20141)<\/p>\n where p = pressure (units: Pa)<\/p>\n where V = volume (units: m3)<\/p>\n where n = number of moles of gas<\/p>\n where R = 8.31 (units: J mol\u20141 K\u20141)<\/p>\n where T = temperature (units: K)<\/p>\n where N = number of gas molecules<\/p>\n where kB = 1.38 \u00d7 10-23 (units: J K\u20141)<\/p>\n where EK = KE (units: J)<\/p>\n where NA = 6.02 x 1023 (units: mol\u20141)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u52a8\u91cf <\/strong>Force & Momentum<\/strong><\/p>\n where F = \u529b (\u5355\u4f4d: N)<\/p>\n where m = \u8d28\u91cf (\u5355\u4f4d: kg)<\/p>\n where F = force (units: N)<\/p>\n where m = mass (units: kg)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u80fd\u91cf<\/strong> & <\/strong>\u529f\u7387<\/strong> Energy & Power<\/strong><\/p>\n \u91cd\u529b\u52bf\u80fd<\/p>\n \u52a8\u80fd<\/p>\n \u673a\u68b0\u529f\u7387<\/p>\n where Ep = \u91cd\u529b\u52bf\u80fd (\u5355\u4f4d: J)<\/p>\n where m = \u8d28\u91cf (\u5355\u4f4d: m s\u20141)<\/p>\n where g = 9.81 (\u5355\u4f4d: m s\u20142)<\/p>\n where Ek = \u52a8\u80fd (\u5355\u4f4d: J)<\/p>\n where P = \u673a\u68b0\u529f\u7387 (\u5355\u4f4d: W)<\/p>\n where F = \u65bd\u52a0\u529b (\u5355\u4f4d: N)<\/p>\n where EP = gravitational PE (units: J)<\/p>\n where m = mass (units: m s\u20141 )<\/p>\n where g = 9.81 (units: m s\u20142)<\/p>\n where EK = KE (units: J)<\/p>\n where P = mechanical power (units: W)<\/p>\n where F = applied force (units: N)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u5706\u5468\u8fd0\u52a8<\/strong> Circular Motion<\/strong><\/p>\n \u5411\u5fc3\u52a0\u901f\u5ea6<\/p>\n where a = \u5411\u5fc3\u52a0\u901f\u5ea6 (\u5355\u4f4d: m s\u20142)<\/p>\n where \u03c9 = \u89d2\u901f\u5ea6 (\u5355\u4f4d: rad s\u20141)<\/p>\n where f = \u9891\u7387 (\u5355\u4f4d: Hz)<\/p>\n where F = \u5411\u5fc3\u529b (\u5355\u4f4d:\u00a0 N)<\/p>\n where a = centripetal acceleration (units: m s\u20142)<\/p>\n where v = speed (units: m s\u20141)<\/p>\n Where r = radius (units: m)<\/p>\n Where \u03c9 = angular velocity (units: rad s\u20141)<\/p>\n where f = frequency (units: Hz)<\/p>\n where F = centripetal force (units:\u00a0 N)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u5f15\u529b<\/strong> Gravitational Force<\/strong><\/p>\n \u725b\u987f\u4e07\u6709\u5f15\u529b\u5b9a\u5f8b<\/p>\n where\u00a0 F = \u91cf\u503c\u5f15\u529b (\u5355\u4f4d: N)<\/p>\n where G = 6.67 \u00d7 10-11 (\u5355\u4f4d: N m2 kg\u20142)<\/p>\n where m1, m2 = \u8d28\u91cf (\u5355\u4f4d: kg)<\/p>\n where r = \u8ddd\u79bb (\u5355\u4f4d: m)<\/p>\n where F = gravitational force (units: N)<\/p>\n where G = 6.67 \u00d7 10-11 (units: N m2 kg\u20142 )<\/p>\n where m1, m2 = mass (units: kg)<\/p>\n where r = separation (units: m)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u53cc\u7f1d<\/strong> & <\/strong>\u884d\u5c04\u5149\u6805<\/strong> Double Slit & Diffraction Grating<\/strong><\/p>\n \u53cc\u7f1d\u5e72\u6d89\u95f4\u8ddd\u516c\u5f0f<\/p>\n \u884d\u5c04\u5149\u6805\u65b9\u7a0b<\/p>\n where\u00a0 \u0394y = \u6761\u7eb9\u4e4b\u95f4\u7684\u8ddd\u79bb (\u5355\u4f4d: m)<\/p>\n where \u03bb = \u6ce2\u957f (\u5355\u4f4d: m)<\/p>\n where D = \u53cc\u72ed\u7f1d\u4e0e\u6761\u7eb9\u4e4b\u95f4\u7684\u8ddd\u79bb (\u5355\u4f4d: m)<\/p>\n where a = \u53cc\u72ed\u7f1d\u4e4b\u95f4\u7684\u8ddd\u79bb (\u5355\u4f4d: m)<\/p>\n where d = \u884d\u5c04\u5149\u6805\u4e4b\u95f4\u7684\u8ddd\u79bb (\u5355\u4f4d: m)<\/p>\n where n = 0, 1, 2, 3<\/p>\n where \u0394y = separation between fringes (units: m)<\/p>\n where \u03bb = wavelength (units: m)<\/p>\n where D = separation between the double-slit & the screen (units: m) where a = separation between the slits\u00a0 (units: m)<\/p>\n where d = separation between each grating (units: m)<\/p>\n where n = order = 0, 1, 2, 3<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u900f\u955c<\/strong> Lenses<\/strong><\/p>\n \u5355\u7247\u900f\u955c\u65b9\u7a0b<\/p>\n where u = \u7269\u8ddd (\u5355\u4f4d: m)<\/p>\n where v = \u50cf\u8ddd (\u5355\u4f4d: m)<\/p>\n where f = \u7126\u8ddd\u00a0 (\u5355\u4f4d: m)<\/p>\n where u = object distance (units: m)<\/p>\n where v = image distance (units: m)<\/p>\n where f = focal length (units: m)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u7535\u573a<\/strong> Electric Fields<\/strong><\/p>\n \u5e93\u4f26\u5b9a\u5f8b<\/p>\n where F = \u9759\u7535\u529b (\u5355\u4f4d: N)<\/p>\n where \u01900 = 8.85 \u00d7 10-12 (\u5355\u4f4d: C2 N\u20141 m\u20142)<\/p>\n where Q1, Q2\u00a0 = \u7535\u8377 (\u5355\u4f4d: C)<\/p>\n where r = \u8ddd\u79bb (\u5355\u4f4d: m)<\/p>\n where F = electrostatic force (units: N)<\/p>\n where \u01900 = 8.85 \u00d7 10-12 (units: C2 N\u20141 m\u20142)<\/p>\n where Q1, Q2 = electric charge (units: C)<\/p>\n where r = separation (units: m)<\/p>\n \u70b9\u7535\u8377\u7684\u7535\u573a\u5f3a\u5ea6<\/p>\n \u5e73\u884c\u677f\u95f4\u7684\u7535\u573a<\/p>\n where E = \u7535\u573a\u5f3a\u5ea6 (\u5355\u4f4d: N C\u20141\u00a0 or\u00a0 V m\u20141 )<\/p>\n where Q = \u7535\u8377 (\u5355\u4f4d: C)<\/p>\n where V = \u7535\u52bf\u5dee (\u5355\u4f4d: V)<\/p>\n where d = \u5e73\u884c\u677f\u95f4\u7684\u8ddd\u79bb (\u5355\u4f4d: m)<\/p>\n where E = electric field strength (units: N C\u20141 or\u00a0 V m\u20141)<\/p>\n where Q = charge (units: C)<\/p>\n where V = potential difference (units: V)<\/p>\n where d = separation (units: m)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u7535\u963b\u7387<\/strong> Resistivity<\/strong><\/p>\n where R = \u7535\u963b (\u5355\u4f4d: \u03a9)<\/p>\n where \u03c1 = \u7535\u963b\u7387 (\u5355\u4f4d: \u03a9m)<\/p>\n where l = \u957f\u5ea6 (\u5355\u4f4d: m)<\/p>\n where A = \u6a2a\u622a\u9762\u9762\u79ef\u00a0 (\u5355\u4f4d: m2)<\/p>\n where R = resistance (units: \u03a9)<\/p>\n where \u03c1 = resistivity (units: \u03a9m)<\/p>\n where l = length (units: m)<\/p>\n where A = cross sectional area (units: m2)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u7535\u963b\u5668<\/strong> Resistors<\/strong><\/p>\n \u4e32\u8054\u7535\u963b\u5668<\/p>\n \u5e76\u8054\u7535\u963b\u5668<\/p>\n where R = \u7b49\u6548\u7535\u963b (\u5355\u4f4d: \u03a9)<\/p>\n where R = equivalent resistance (units: \u03a9)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u7535\u8def<\/strong> Electric Circuits<\/strong><\/p>\n \u7535\u8def\u4e2d\u7684\u529f\u7387<\/p>\n where P = \u529f\u7387 (\u5355\u4f4d: W)<\/p>\n where I = \u7535\u6d41 (\u5355\u4f4d: A)<\/p>\n where V = \u7535\u52bf\u5dee (\u5355\u4f4d: V)<\/p>\n where R = \u7535\u963b (\u5355\u4f4d: \u03a9)<\/p>\n where P = power (units: W)<\/p>\n where I = current (units: A)<\/p>\n where V = potential difference (units: V)<\/p>\n where R = resistance (units: \u03a9)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u78c1\u573a\u5bf9\u8fd0\u52a8\u7535\u8377\u7684\u4f5c\u7528\u529b<\/strong> Force on a Moving Charge in a Magnetic Field \/ B-field<\/strong><\/p>\n where F = \u529b (\u5355\u4f4d: N)<\/p>\n where B = \u78c1\u573a\u5f3a\u5ea6 (\u5355\u4f4d: T)<\/p>\n where Q = \u7535\u8377 (\u5355\u4f4d: C)<\/p>\n where F = magnetic force (units: N)<\/p>\n where B = magnetic field strength (units: T)<\/p>\n where Q = charge (units: C)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u78c1\u573a\u5bf9\u8f7d\u6d41\u5bfc\u4f53\u7684\u4f5c\u7528\u529b<\/strong> Force on a Current-carrying Conductor in a Magnetic Field\/ B-field<\/strong><\/p>\n where F = \u529b (\u5355\u4f4d: N)<\/p>\n where B = \u78c1\u573a\u5f3a\u5ea6 (\u5355\u4f4d: T)<\/p>\n where I = \u7535\u6d41 (\u5355\u4f4d: A)<\/p>\n where L = \u957f\u5ea6 (\u5355\u4f4d: m)<\/p>\n where F = magnetic force (units: N)<\/p>\n where B = magnetic field strength (units: T)<\/p>\n where I = current (units: A)<\/p>\n where L = length (units: m)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u957f\u76f4\u5bfc\u7ebf\u6240\u4ea7\u751f\u7684\u78c1\u573a<\/strong> Magnetic Field\/ B-field due to a Long Straight Wire<\/strong><\/p>\n where B = \u78c1\u573a\u5f3a\u5ea6 (\u5355\u4f4d: T)<\/p>\n where \u03bc0 = 4\u03c0 \u00d7 10-7 (\u5355\u4f4d: H m\u20141)<\/p>\n where I = \u7535\u6d41 (\u5355\u4f4d: A)<\/p>\n where r = \u8ddd\u79bb (\u5355\u4f4d: m)<\/p>\n where B = magnetic field strength\u00a0 (units: T)<\/p>\n where \u03bc0 = 4\u03c0 \u00d7 10-7 (units: H m\u20141)<\/p>\n where I = current (units: A)<\/p>\n where r = distance (units: m)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u87ba\u7ebf\u7ba1\u4e2d\u7684\u78c1\u573a<\/strong> Magnetic Field\/ B-field due to a Long Solenoid<\/strong><\/p>\n where B = \u78c1\u573a\u5f3a\u5ea6 (\u5355\u4f4d: T)<\/p>\n where \u03bc0 = 4\u03c0 \u00d7 10-7 (\u5355\u4f4d: H m\u20141)<\/p>\n where I = \u7535\u6d41 (\u5355\u4f4d: A)<\/p>\n where l = \u87ba\u7ebf\u7ba1\u957f\u5ea6 (\u5355\u4f4d: m)<\/p>\n where B = magnetic field strength (units: T)<\/p>\n where \u03bc0 = 4\u03c0 \u00d7 10-7 (units: H m\u20141)<\/p>\n where I = current (units: A)<\/p>\n where l = total length of the solenoid (units: m)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u611f\u751f\u7535\u52a8\u52bf<\/strong> Induced e.m.f.<\/strong><\/p>\n where \u03b5 = \u611f\u5e94\u7535\u52a8\u52bf<\/p>\n where \u0394\u03c6 = \u78c1\u901a\u91cf\u7684\u6539\u53d8 (\u5355\u4f4d: Wb)<\/p>\n where \u0394t = \u65f6\u95f4\u95f4\u9694 (\u5355\u4f4d: s)<\/p>\n where \u03c6 = \u78c1\u901a\u91cf(\u5355\u4f4d: Wb)<\/p>\n where \u03b5 = induced e.m.f<\/p>\n where \u0394\u03c6 = change in magnetic flux (units: Wb)<\/p>\n where \u0394t = time interval (units: s)<\/p>\n where \u03c6 = magnetic flux (units: Wb)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u53d8\u538b\u5668<\/strong> Transformers<\/strong><\/p>\n where VS = \u526f\u7ebf\u5708\u7535\u52bf\u5dee(\u5355\u4f4d: V)<\/p>\n where VP = \u539f\u7ebf\u5708\u7535\u52bf\u5dee(\u5355\u4f4d: V)<\/p>\n where NS = \u526f\u7ebf\u5708\u7ebf\u5708\u6570\u91cf<\/p>\n where NP = \u539f\u7ebf\u5708\u7ebf\u5708\u6570\u91cf<\/p>\n where VS = potential difference across the Secondary coil (units: V)<\/p>\n where VP = potential difference across the Primary coil (units: V)<\/p>\n where NS = number of turns in the Secondary coil<\/p>\n where NP = number of turns\/ windings in the Primary coil<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u653e\u5c04\u6027<\/strong> Radioactivity<\/strong><\/p>\n \u653e\u5c04\u8870\u53d8\u5b9a\u5f8b<\/p>\n \u534a\u8870\u671f\u548c\u8870\u53d8\u5e38\u6570<\/p>\n \u653e\u5c04\u5f3a\u5ea6\u548c\u672a\u8870\u53d8\u7684\u539f\u5b50\u6838\u6570\u76ee<\/p>\n where N = \u5269\u4f59\u7684\u4e0d\u8870\u53d8\u653e\u5c04\u6027\u6838<\/p>\n where k = \u8870\u53d8\/\u653e\u5c04\u5e38\u6570 (\u5355\u4f4d: s\u20141)<\/p>\n where t = \u65f6\u95f4\u95f4\u9694 (\u5355\u4f4d: s)<\/p>\n where t1\/2 = \u534a\u8870\u671f (\u5355\u4f4d: s)<\/p>\n where A = \u6d3b\u52a8\u671f (\u5355\u4f4d: Bq)<\/p>\n where N = number of undecayed radioactive nuclei<\/p>\n where k = decay constant (units: s\u20141)<\/p>\n where t = time (units: s)<\/p>\n where t1\/2 = half-life (units: s)<\/p>\n where A = activity (units: Bq)<\/p>\n \u7269\u7406\u516c\u5f0f\u82f1\u6587\uff1a\u8d28\u80fd\u7b49\u4ef7\u6027<\/strong> Energy-mass Equivalence<\/strong><\/p>\n where E = \u80fd\u91cf (\u5355\u4f4d: J or eV)<\/p>\n where m = \u8d28\u91cf (\u5355\u4f4d: kg or eV\/c2 )<\/p>\n where c = 3 \u00d7 108 (\u5355\u4f4d: m s\u20141)<\/p>\n where E = energy (units: J\u00a0 or\u00a0 eV)<\/p>\n where m = mass (units: kg\u00a0 or\u00a0 eV\/c2 )<\/p>\n where c = 3 \u00d7 108 (units: m s\u20141)<\/p>\n \u5bf9\u7269\u7406Physics\u8bfe\u7a0b\u6709\u7591\u95ee\uff0c\u60f3\u5bfb\u6c42\u8fdb\u4e00\u6b65\u5b66\u672f\u5e2e\u52a9\uff1f\u6b22\u8fce\u8054\u7cfbStudyGate\uff0c\u5404\u7c7b\u7406\u5de5\u5546\u79d1\u5199\u4f5c\u7b54\u7591\u89e3\u60d1\uff0c\u4e3a\u4f60\u7684\u7559\u5b66\u4e4b\u8def\u503e\u60c5\u52a9\u529b\uff01\u6211\u4eec\u7684\u670d\u52a1\u5305\u542b\u7269\u7406\u4f5c\u4e1a<\/a>\u3001\u5316\u5b66\u4f5c\u4e1a<\/a>\u3001\u751f\u7269\u4f5c\u4e1a<\/a>\u3001Lab Report<\/a>\u3001Project\u4f5c\u4e1a\u8f85\u5bfc<\/a>\u3002<\/p>\n Step 1\uff1a\u63d0\u4ea4\u4f5c\u4e1a\u8981\u6c42<\/p>\n \u4e09\u5206\u949f\u5373\u53ef\u5b8c\u6210\u4e0b\u5355\uff0c\u4e0b\u5355\u65f6\u53ef\u4ee5\u9009\u62e9\u4f5c\u4e1a\u9700\u8981\u7684\u65f6\u95f4\u548c\u5177\u4f53\u8981\u6c42\u3002<\/p>\n Step 2\uff1a\u9009\u62e9\u4e13\u4e1a\u5bfc\u5e08<\/p>\n \u4f5c\u4e1a\u63d0\u4ea4\u6210\u529f\u4e4b\u540e\uff0c\u5bfc\u5e08\u5ba1\u6838\u8981\u6c42\uff0c\u786e\u8ba4\u4e4b\u540e\u4f1a\u8054\u7cfb\u62a5\u4ef7\uff0c\u53ef\u81ea\u7531\u9009\u62e9\u4e13\u4e1a\u5b66\u79d1\u76f8\u5173\u5bfc\u5e08\uff0c\u5e76\u4e14\u786e\u8ba4\u4f5c\u4e1a\u6700\u7ec8\u4ef7\u683c\u3002<\/p>\n Step 3\uff1a\u5b8c\u6210\u8ba2\u5355, \u51c6\u65f6\u4ea4\u4ed8<\/p>\n \u5bfc\u5e08\u5f00\u59cb\u5904\u7406\u8ba2\u5355\u3002\u5728\u6b64\u671f\u95f4\u6709\u4efb\u4f55\u95ee\u9898\uff0c\u90fd\u53ef\u4ee5\u767b\u5f55\u8d26\u53f7\u548c\u5bfc\u5e08\u968f\u65f6\u6c9f\u901a\u3002\u4f5c\u4e1a\u5b8c\u6210\u540e\uff0c\u7cfb\u7edf\u81ea\u52a8\u53d1\u9001\u81f3\u4f60\u7684\u90ae\u7bb1\uff0c\u6240\u6709\u4fe1\u606f\u5b89\u5168\u4fdd\u5bc6\u3002\u4f60\u4e5f\u53ef\u4ee5\u767b\u5f55\u8d26\u53f7\u76f4\u63a5\u4e0b\u8f7d\u3002<\/p>\n Step 4\uff1a\u6536\u5230\u7b54\u684814\u5929\u4e4b\u5185\u786e\u8ba4\uff0c100%\u6ee1\u610f\u4fdd\u8bc1<\/p>\n \u6536\u5230\u4f5c\u4e1a\u4e4b\u540e14\u5929\u4e4b\u5185\uff0c\u5982\u679c\u5bf9\u4f5c\u4e1a\u6709\u4efb\u4f55\u95ee\u9898\uff0c\u90fd\u53ef\u4ee5\u8054\u7cfb\u5bfc\u5e08\u8fdb\u884c\u4fee\u6539\u3002100%\u6ee1\u610f\u4fdd\u8bc1\uff0c\u53ea\u6709\u4f60\u9009\u62e9\u6ee1\u610f\u7b54\u6848\u4e4b\u540e\uff0c\u6211\u4eec\u624d\u4f1a\u6263\u6b3e\uff0c\u5b89\u5168\u6709\u4fdd\u969c\u3002<\/p>\n Step 5\uff1a\u5bf9\u5bfc\u5e08\u63d0\u51fa\u8bc4\u4ef7<\/p>\n \u6211\u4eec\u62e5\u6709\u4e25\u683c\u7684\u5bfc\u5e08\u8003\u6838\u8bc4\u4ef7\u673a\u5236\uff0c\u670d\u52a1\u597d\u4e0d\u597d\uff0c\u5168\u7531\u4f60\u8bf4\u4e86\u7b97\uff01\u4f60\u7684\u8ba4\u540c\u662f\u6211\u4eec\u524d\u8fdb\u7684\u52a8\u529b\u3002<\/p>\n StudyGate<\/strong>\u4e13\u4e1a\u7406\u5de5\u79d1\u4f5c\u4e1a\u8f85\u5bfc<\/a>\uff0c\u6700\u9760\u8c31\u7684\u7269\u7406\u4f5c\u4e1a\u8f85\u5bfc<\/a>\uff01<\/strong><\/p>\n \u6709\u4efb\u4f55\u95ee\u9898\uff0c\u6b22\u8fce\u968f\u65f6\u54a8\u8be2\u7f51\u9875\u5ba2\u670d\uff01<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" \u7269\u7406\u4f5c\u4e1a\u5343\u5343\u4e07\uff0c\u4f46\u662f\u5e38\u7528\u7684\u89e3\u9898\u516c\u5f0f\u4e5f\u5c31\u90a3\u4e9b\uff0c\u76f4\u7ebf\u8fd0\u52a8\u3001\u725b\u987f\u8fd0\u52a8\u5b9a\u5f8b\u3001\u4e07\u6709\u5f15\u529b\u5b9a\u5f8b\u7b49\u7b49\u3002\u60f3\u8981\u5b66\u597d\u7269\u7406\uff0c\u719f\u8bb0\u7269\u7406\u516c\u5f0f\u662f\u524d\u63d0\u3002\u6211\u4eec\u4e3a\u5927\u5bb6\u6574\u7406\u4e86\u6700\u5e38\u7528\u7684\u7269\u7406\u516c\u5f0f\u8868Physics Formula Sheet \u4e2d\u82f1\u6587\u5bf9\u7167\uff0c\u6293\u7d27\u6536\u85cf\u5427\uff01<\/p>\n","protected":false},"author":1,"featured_media":5767,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"_acf_changed":false,"_exactmetrics_skip_tracking":false,"_exactmetrics_sitenote_active":false,"_exactmetrics_sitenote_note":"","_exactmetrics_sitenote_category":0,"cybocfi_hide_featured_image":"","footnotes":""},"categories":[66],"tags":[88,70,89,69],"class_list":["post-5760","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-66","tag-assignment","tag-physics","tag-89","tag-69"],"acf":[],"yoast_head":"\n<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n